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Science and Technologies for Phosphorus Sustainability

The STEPS 25-IN-25 Vision The STEPS Mission Statement

Facilitate a 25% reduction in human dependence on Develop and implement convergence research on

mined phosphates and a 25% reduction in losses of point phosphorus sustainability across disciplines, scales,

and non-point sources of phosphorus to soils and water sectors, and communities that:

resources within 25 years, leading to enhanced resilience generates new knowledge across the natural, engineered,

of food systems and reduced environmental damage. sl bl s st sl Rt il Che L

STEPS

Science and Technologies for Phosphorus Sustainability

innovates new phosphorus sustainability solutions; and
trains a diverse group of scholars who are equipped to
address complex societal challenges.



Roadmapping Engages Stakeholders

Kicked off in-person collaboration on roadmap at P Week

A process led by RTI International by Cary Strickland, Jessie Man, and Taylor Moot Nine Impact Opportunities
within a research project led by Justin Baker and contributed from dozens of
individuals in Working Groups

Increase
Awareness

This roadmap will serve as a guide for the activities required to improve sustainable
management of phosphorus in the United States
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Objectives

e |mproved modeling of P consumption in US
agricultural system

e Improving regional P boundaries for
enhanced food security

e Analysis of P interventions and STEPS & e
Impact Opportunities o 3 Lutm g
e Capturing Global-to-Local scale () ;
dependencies H e ast
e Analyzing tradeoffs across P, N, and C policy e
® 7T\ Optimize Use

objectives



Economic modeling of P management interventions

e Advancing economic modeling of P management options at local, regional,
and global scales

e Economic models help us quantify tradeoffs of different P interventions and
policy strategies
e Economic models offer insight on how market drivers, policy incentives, and
behavioral factors influence land management choices
o Site- or farm-scale models to analyze specific interventions

m capture dependenciesbetween physical P flows and farm management

o Global-scale models to evaluate the influence of broad market drivers on land and P
management at regional/global scales



Optimal legacy P management at farm scale

(a) Soil available P (Ib ac?) (b) Soil available P (b ac?)
0 100 200 300 400 500 600 0 10 20 30 40 S0 60 70 80
i X i

e Farm-scale economic model
calibrated to Tidewater (NC) field data

e Model accounts for uncertainty in
legacy P stocks, input and output
prices

e Incorporates behavioral components
(e.qg., risk aversion)

e Captures legacy P dynamics

e Highlights how new information can e e e R

Prate (Ibac?) Prate (Ib ac?)

affect management decisions Tiecher, Gatiboni, et al. (2023)
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https://acsess.onlinelibrary.wiley.com/doi/full/10.1002/cft2.20251

Optimal legacy P management at farm scale

e \We model farm management .
of legacy P as a Partially U e &
Observable Markov Decision ‘.Y Y Y
Orocess e VAN A

e Farmers learn about their | Ifrmaton o) o | ()| S
systems, update beliefs and
(maybe) change practices R N A N A N N

e Farmers can invest in soil ' '
sampling

Belief State Beliefs (t) —» ( Beliefs (t+1)




Optimal legacy P management at farm scale

P fertilizer Price and State Transition Probability (1960-2014)
(Super-phosphate 44-46% Phosphate, $ per material short ton)

e Uncertainty in input and output =3
prices 'fés 5
o Weintroduce a “regime switching” % af
modelto reflectmoderate and 1 3
high price states. * F
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Optimal legacy P management under limited information

How shouldfarmersuseinfo
on bioavailablesoil P?

Considertwo soil sampling
techniques:
o Standard sampling:
o Samplesare
collected peracre.
e Pointsampling (low
observation error, High
Sampling Cost).
o 4 samplesper
acre, collected at a
specificgrid point.

Uncertainty in Legacy P Bioavailability
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Optimal legacy P management under limited information

P fertilizer Price (Moderate) P fertilizer Price (High)
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Optimal management of legacy P over time

Higher stocks, higher
uncertainty =» depletion
of legacy P stocks
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Optimal management of legacy P over time
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W hat about behavior?

Higher risk aversion =» more sampling, but also more P application

n=0 n=2 n=15
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Modeling legacy P management at farm scale

e What have we learned from this exercise:
o LegacyP stockdynamics are affected by crop managementchoices
o Investments in information can affect management decisions, increase legacy P mining
o Behavioral factors such as risk aversion and intertemporal consumption preferences have a
large impact on P management decisions

e Next steps:

o Expanding the modelto include an Ohio case study
o Adding environmental damages of P runoff
o Assessing policy options to improve outcomes

e BUT...

o Thisis only one intervention at a farm scale



Sectoral Economic Modeling e s

e Capturing market dynamics across
regions

o E.g., trade flows
® Incorporates spatial heterogeneity in
crop production practices
® Accounts for market opportunity costs
of P interventions
® Supply and market outcomes tied to

environmental and development factors
o E.g., food security

Global hunger and climate change adaptation through
international trade

Charlotte Janssens ™, Petr Havlik, Tamés Krisztin, Justin Baker, Stefan Frank, Tomoko Hasegawa, David

Leclére, Sara Ohrel, Shaun Ragnauth, Erwin Schmid, Hugo Valin, Nicole Van Lipzig & Miet Maertens

Nature Climate Change 10, 829-835 (2020) | Cite this article

28k Accesses 109 Citations | 133 Altmetric | Metrics
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The role of economic modeling — a quick primer

Costs of P Interventions

MACC!

Al A? Quantity of P Intervention
» or pollution abatement




The role of economic modeling — a quick primer

Costs of P Interventions

MACC!

MACC! =» marginal abatement costs of P

interventions: a measure of techno-
economic costs

AZ

v

Quantity of P Intervention
or pollution abatement



The role of economic modeling — a quick primer

Costs of P Interventions

MACC!

« Techno-economic costs are derived from
engineering studies

« May not reflectthe economic opportunity
costs of P interventions

+ E.g.,if interventions reduce total productivity,
what is the market tradeoff?

Al A? Quantity of P Intervention
or pollution abatement

v



The role of economic modeling — a quick primer

Costs of P Interventions MACC? pfood S2
e

Dfood

Al A3 A? Qof P Qfood
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The role of economic modeling — a quick primer

Costs of P Interventions food
MACC? P Market feedback

mechanism
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Economic Modeling to Evaluate STEPS to P Sustainability

e How do global change forces affect US P consumption and the opportunity
costs of interventions?

e How can we better account for “scale dependencies” when modeling P
Intervention scenarios?

e What are important tradeoffs of P interventions in the U.S. given its
Importance to global agricultural markets



Modeling Approach

Global-Local-Global Scale Modeling of P Intervention Scenarios using a detailed global
model of the land use and food systems (GLOBIOM)
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Fertilizer Prices, Agricultural Production, and
Food Security



USD par Metric Ton

Importance of P affordability to the global food supply

e P rock and fertilizer prices have been
high and volatile since 2020

® \Where are prices headed in the future?
® \What will this mean forglobal food

productionand the distribution of fertilizer
use?
_,n.\_/_j M e Price scenarios: 25%, 50%, 100%,

200%, 300% and 400% increase in P
and N fertilizers in GLOBIOM

200 M3 2016 20M9 U2 2025 2008 2001 2004
aar

Ho and Baker, 2024.



Importance of P affordability to the global food supply

e Fertilizer price impacts on
food security at regional and
global scales

e Population at risk of hunger
grows with sustained higher
fertilizer prices

g

Wardd Peopla at Risk of Hunger Change 2050
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Gong et al., 2024.
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Analyzing tradeoffs across P, N, and C
policy objectives



Analyzing tradeoffs across P, N, and C policy objectives

e Climate and energy policies drive changes in land use / production strategies

e Productions shifts =» intensive and extensive margin adjustmentsin fertilizer
use

e Potential synergies (and tradeoffs) between climate mitigation in

agriculture/forestry and P management
o Reduced fertilizes =» improved water quality?
o Reduced runoff =» lower indirect CH, emissions from eutrophication?
o Will climate policy induce regional water quality leakage in regions with limited C sequestration
capacity?
e Other considerations;
o What is optimal from a C perspective might be suboptimalfroma P or N perspective...



Soil Loss (Mg/ha)

Carbon-Water Tradeoffs of Climate-smart Practices?
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Tradeoffs across P, N, and C Policies

World CO, Mitigation 2050
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e Modeled MACC Curves using the
GLOBIOM model and many
different combinations of price

incentives
o Ag sectoronly
o Forestry/ land use only
o Combined
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Tradeoffs across P, N, and C Policies
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Mitigation Price Incentive

e How do global climate
policy incentives affect
the distribution of P

consumption?

® Depends onintensive and
extensive margin
adjustments in land use

Intensification
inthe U.S.



Tradeoffs across P, N, and C Policies

P Usage Change Under Different Mitigation Price Incentive 2050

$5 at 5% $20 at 5%

e Distribution of P
consumption changes in
response to climate
policy signal




Tradeoffs across P, N, and C Policies

e Mitigation can exacerbate

hunger risk
o Plot shows ration of mitigation
per
o Mitigation slows down at higher
CO2 prices, hunger risk
increases non-linearly

e 3$30/tCO2e appearsto be a
critical threshold

CO, Mitigation per million People at Risk of Hunger 2050
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Global-to-Local Scale Dependencies: Climate
Change and Trade



Global-to-Local Scale Dependencies: Climate Change and Trade

Combine Impact on Water Withdraw in US 2050
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e Decomposing climate
change and trade-induced
Impacts on US crop mix and

iInput use decisions
o Ingeneral, US water use for
irrigation increases under
climatechange
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Global-to-Local Scale Dependencies

Combine Impact on P Usage in US 2050
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Isolating Climate and Trade-Induced Impact

Impact (10000

Climate Impact on P Usage in US 2050 Trade Impact on P Usage in US 2050
1 RRE ]
o i
SRR
ol g - -
N — o
i ..’r..—
et e [
s = _ ey ey e
e - : . - g d :‘J:‘: M e - ::
= - .ﬁ s < o e
L k n ==
S il L= —_
g -
P
" i
s
[
cre 050 AI; Sor vFN _—
a R a Com a 08D E Sopa a et
B cin B o B5 oo B so B wer B3 con B3 o B3 me B3 vin
BER con B3 car B A e

Trade adjustments = upward pressure on input use
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Why is this important?

e Local/regional P consumption patterns are affected by global market
adjustments

e Estimates of local impacts of policy and/or environmental change
forces could be biased if they do not consider global market
connections

e Economic effectiveness of P interventions tied to global market
conditions and trade flows.




Thank you!

Justin Baker: justinbaker@ncsu.edu
Zigian Gong: zgong5@ncsu.edu
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