The Food, Agriculture, Biodiversity, Land, and Energy (FABLE) Consortium: Reconciling sustainable pathways across national and global scales

Aline Mosnier Scientific Director of the FABLE Consortium, SDSN

Forestry and Agriculture GHG Modeling Forum, Session 5 Carbon Plus March 7, 2024

INTRODUCTION

Agriculture and forestry will be the most impacted by climate change and losses of ecosystem services, but many actors are still defending the status quo

Transformation 4 - Sustainable food, land, water, and oceans

The 4th transformation has impacts on all the SDGs :

Source: Sachs et al. 2019, Nature Sustainability

The mission of the Food Agriculture Biodiversity Land and Energy (FABLE) Consortium

- To help countries transition towards sustainable food and land systems
- Without displacing problems to other countries (« leakage ») so that we remain within the safe planetary boundaries
- System to work with the rest of the society

Who we are

FABLE Advisory Council elected internal and external members for 2 years

A collaborative initiative launched in 2017

FABLE Country Teams:

independent research teams

- ➢ 24 countries
- ➤ ~200 researchers,
- ➢ ~80 national institutes

+ technical partners such as PIK

FABLE Secretariat formed of SDSN, IIASA and the Alliance of Bioversity-CIAT

What we do

 Build in-country modeling capacity to assess the impacts of national policies on food security, GHG emissions, biodiversity, resource use, and socio-economic development

2. Coordinate national-to-global integrated pathways to show interdependencies across countries and the need for collaboration to achieve the Paris Climate agreement and the SDGs ("Scenathons").

3. Support science-policy interactions for pragmatic research and informed decision making

The FABLE Calculator

- Excel based tool
- Open and free
- At national or subnational level
- Focus on agricultural sector (>70 commodities)
- Forestry sector newly added and under testing
- 2000-2050, 5yr time step
- No optimization equilibrium based on quantities only

SCENATHON 2023

What is a Scenathon?

"scenario marathon"

It is an iterative approach to integrate national and global scales

1. Agree on global sustainability targets

2. Local researchers design and compute national mid-century pathways

3. Aggregate national pathways, ensures international trade is consistent, and compare with global targets

FABLE Scenathon 2023

targets

22 countries participating + 6 rest of the world regions

 Online and in-person stakeholder consultations

	Global Targets	Current Trends	National Commitments	Global Sustainability
Food security				
Kcal/cap/day	at least 10%>MDER	yes	yes	yes
	lower than 30%> MDER	no	no	no
Undernourishment	<5% by 2030			
Obesity	<5% by 2030			
<u>Biodiversity</u>				
Protected areas	30% by 2030	23%	24%	25%
Agroecological practices	50% of cropland by 2030			
Deforestation	0 by 2030	31	4	0.08
LNPP area	0 loss by 2030	38	9	22
	increase >15% by 2050	-12%	-9%	-10%
<u>Climate</u>				
CO2e from agriculture	<4 Gt by 2050	8.6	6.4	4.7
CH4 from agriculture	reduced by 10 Mt by 2030	21	10	0.4
	reduced by 28 Mt by 2050	67	21	-20
CO2 from LUC	<-1.3 Gt by 2050	3.1	0.4	-2.2
Cumulative CO2 from AFOLU	<40 Gt 2020-2050			
<u>N & P</u>				
Nitrogen use	<68 Tg by 2050	150 (120)	123 (100)	117 (94)
Phosphorous use	<16 Tg by 2050	32	29	31

• It is getting harder to meet all our global targets

- We have more targets (15) potential trade-offs between different objectives become more obvious
- Some targets have been narrowed, e.g. zero deforestation instead of zero net deforestation, and more precise e.g. methane
- By shifting calibration year from 2010 to 2020, the challenge to meet our targets just got bigger as too little progress has been done during the past decade

National Commitments

- Hard to translate vague commitments into quantitative targets specific to the food and land systems
- Some commitments outside the boundaries of what can be computed with the FABLE Calculator
- Difficulties to implement the commitments into the tool for some countries

Global sustainability

• Some countries did not differentiate a lot national commitments from global sustainability

Who has made efforts to reduce GHG emissions compared to what would be fair:

- capability
- responsibility
- equality

Decomposition analysis: Impact of each scenario change on Feasible Kcal

What are the scenarios / actions that drive most impact? Example from the UK

ONLINE INVENTORY

afolumitigationinventory.org

Objectives

- To show the role of agriculture and land use in current greenhouse gas emissions by country
- To gather more detailed data on mitigation options for AFOLU which account for heterogeneity
- To facilitate usage and comparison of GHG emission reduction factors for alternative mitigation options by AFOLU sub-sectors in a transparent and collaborative way
- To highlight the impacts of mitigation options on on-farm inputs, productivity, and biodiversity

https://afolumitigationinventory.org/

Conventional rice farming refers to the traditional method of growing

Emission Factor per Farming System expressed in kg CH4/ha

Rice Cultivation - Conventional rice farming

Trade-offs and synergies

 \uparrow

7

 \rightarrow

И

 $\mathbf{1}$

https://afolumitigationinventory.org/

- China used as pilot in the framework of the FOLU-China country platform and in collaboration with the Chinese Agricultural University
- Data on historical emissions can be displayed for other countries
- We are looking for:
 - relevant papers (scientific and grey literature) that could enrich the database
 - collaborations
 - funding

Global Reports:

Pathways to Sustainable Land-Use and Food Systems (2019 & 2020)

• Pathways for food and land use systems to contribute to global biodiversity targets (2022).

• Environmental and agricultural impacts of dietary shifts at global and national scales (2021).

FABLE Special Issue in Sustainability Science

 Globally-Consistent National Pathways towards Sustainable Food and Land-use Systems. (2022)

Sustainability

Science

VEL T 1030 @ MAN 2218

D Springer

Environmental Research Letters (2023)

Thank you!

fableconsortium.org

